Lesion bypass DNA polymerases replicate across non-DNA segments.

نویسندگان

  • Ayelet Maor-Shoshani
  • Vered Ben-Ari
  • Zvi Livneh
چکیده

A critical feature of the robustness of the DNA replication machinery is the ability to complete its task in the presence of interfering DNA damage. A key mechanism responsible for this task is translesion replication (also termed translesion synthesis), carried out by specialized lesion bypass DNA polymerases of the Y superfamily. Here we show that in Escherichia coli, plasmids can be replicated across a segment of foreign non-DNA material, consisting of hydrocarbon chains of 3 or 12 methylene residues. This replication is carried out by DNA polymerase V and proceeds by at least two mechanisms: (i) Editing out the foreign insert, by polymerase "hopping" across it, which can be mediated by looping out of the insert, leading to its deletion, while preserving the DNA sequence. (ii) DNA synthesis through the insert, which occurs by incorporating one or two nucleotides opposite the hydrocarbon chain, yielding a net increase in the length of the DNA sequence. The remarkable ability of DNA polymerase V to insert nucleotides opposite a hydrocarbon chain shows that DNA synthesis can occur in a region of the template strand, which lacks all fundamental features of DNA, including its purine, pyrimidine, sugar, and phosphate moieties, and its hydrophilic and ionic nature. This bypass ability reflects a striking robustness of the translesion replication apparatus and is likely to contribute to its effectiveness in maintaining genome stability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Replication of ribonucleotide-containing DNA templates by yeast replicative polymerases.

The major replicative DNA polymerases of S. cerevisiae (Pols α, δ, and ɛ) incorporate substantial numbers of ribonucleotides into DNA during DNA synthesis. When these ribonucleotides are not removed in vivo, they reside in the template strand used for the next round of replication and could potentially reduce replication efficiency and fidelity. To examine if the presence of ribonucleotides in ...

متن کامل

DNA repair mechanisms and the bypass of DNA damage in Saccharomyces cerevisiae.

DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex ...

متن کامل

Regulation of the Rev1-pol ζ complex during bypass of a DNA interstrand cross-link.

DNA interstrand cross-links (ICLs) are repaired in S phase by a complex, multistep mechanism involving translesion DNA polymerases. After replication forks collide with an ICL, the leading strand approaches to within one nucleotide of the ICL ("approach"), a nucleotide is inserted across from the unhooked lesion ("insertion"), and the leading strand is extended beyond the lesion ("extension"). ...

متن کامل

Competition, collaboration and coordination--determining how cells bypass DNA damage.

Cells must overcome replication blocks that might otherwise lead to genomic instability or cell death. Classical genetic experiments have identified a series of mechanisms that cells use to replicate damaged DNA: translesion synthesis, template switching and homologous recombination. In translesion synthesis, DNA lesions are replicated directly by specialised DNA polymerases, a potentially erro...

متن کامل

Plant organellar DNA polymerases are replicative and translesion DNA synthesis polymerases

Genomes acquire lesions that can block the replication fork and some lesions must be bypassed to allow survival. The nuclear genome of flowering plants encodes two family-A DNA polymerases (DNAPs), the result of a duplication event, that are the sole DNAPs in plant organelles. These DNAPs, dubbed Plant Organellar Polymerases (POPs), resemble the Klenow fragment of bacterial DNAP I and are not r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 25  شماره 

صفحات  -

تاریخ انتشار 2003